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Basic mathematical prerequisites 
and MATLAB Programming 
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Linear Algebra Review 

Arrays, matrices, vectors and scalars
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• Scalar:  A variable with a single number
• Array: A special variable stores multiple values (called elements).

 Multidimensional array: Arrays containing one or more arrays
 The dimension of an array indicates the number of indices you 

need to select an element.
o For a two-dimensional array you need two indices to select 

an element
o For a three-dimensional array you need three indices to 

select an element
• Matrix: 

 Two dimensional array of numbers
 Matrix dimension: [ number of rows  number of columns ]
 Matrix A with [ n  m ] dimension and elements (entries) Aij in the 

ith row and jth column (indices start from left top to bottom right)
• Vector: one-dimensional array of numbers
• Vectors and scalars are special form of matrices:

 Column vector:  [n1] matrix
 Row vector:  [1m] matrix
 Scalar:  [11] matrix
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1 3 5
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• Matrix addition: 

2 4 6 1 3 5
?

8 7 5 2 1 3
A B C A B

   
        
   

Matrix manipulation

2 4
6 8 ?
1 3
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• Matrix multiplication: 

?L A B  

?M A D  

?N D A  
1
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• Matrix multiplication properties: 

 Not commutative
 Associative

A D D A  

   A D B A D B A D B       

• Transpose matrix: 
'T

ij ji

Q A A
Q A
 


• Scalar multiplication: 
: number

ij ij

Q A A
Q A
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• Identify (square) matrix: 

1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

I R R I R I

 
 
     
 
 
 

• Inverse of a square matrix: 1 1R R R R I    

Matrices that don’t have an inverse are “singular” or “degenerate”
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Basic MATLAB Programming 

• Basic interface
• Working with a script file (m-file)
• Basic variables

 Declaring & manipulating matrix variables
• Basic operators

 Conditional operators
 Input & output operators

• Functions
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Basic interface
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demonstrates the 
address, where 
different files are 
restored or loaded 
(working folder).
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Type your 
instructions here 
and press ENTER 
to execute them.

a list of instructions 
executed by MATLAB

a list of variables 
created by MATLAB

Example: declare a 
column vector cv with 
values 1, 2 and 3.



11

 Create new variable
 Manipulate variable: 

edit value, rename, 
delete, duplicate, etc. 

Two different ways to assign 
values to a new-variable:
1. Using the command window,
2. Double clicking on the new-

variable. 
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Example: declare a 
row vector rv with 
values 4, 5 and 6.
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to see help:
 type help at the 

command window, or
 press the help button.
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to see more details:
 type help or demo at 

the command window.
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Useful Commands and Functions in the interactive mode
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Keyboard shortcuts

• The up arrow key:

 It repeatedly recalls the previously entered commands.

 Likewise, typing the first characters of previously entered line and pressing 
the up arrow key displays the full command line.

• The Tab Key helps to input the MATLAB-functions names 

• The semicolon symbol at the end of a line suppresses the screen output.
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Working with a script-file (m-file) 

1. Create a file with a list of commands 
(called as script-file or m-file),

2. Save the file, and

3. Run the file.
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to create an m-file (script-file) 
containing different MATLAB-
commands:
 type edit at the command 

window, or
 press the New button, and then 

Script button.
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This editor can be used to 
write a MATLAB program.
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Save m-file as V2_01.m
in the working folder.
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Run program V2_01.m.
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Basic variables
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 May contain characters, numbers and symbols
 No numbers or symbols in front of them.

Example of illegal variable names: 1var ;  #aaa
 MATLAB makes a difference between capital or small letters. 

Name:

 Three types of variables values: numeric, binary logical and string
 Three forms: scalar, matrix, multidimensional array

Value:

To declare a MATLAB-variable, type in a variable name and specify its value.
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 Single value
 MATLAB will decide on the data type automatically, 

so you don’t have to declare its data type.

Scalar variables
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 Predefined scalar variables:
In MATLAB some names have been reserved for specific variables. 
Creation of a new variable with the name of a predefined variable 
should be avoided. 
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• Matrix elements can be considered as a two dimensional array.
 Its size defined by the number of row and column: nr-by-nc

 Each element considered as a variable with a single value and two indexes.
 The element values in a matrix variable defined in square brackets.

• To create a matrix, use the comma to separate each value in a row, and a semicolon to enter 
the value for a new row.

Matrix variables

• Scalars and 
vectors are special 
form of matrices.
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Declaring & manipulating matrix variables

• matrixName = zeros(n, m)

Create a matrix of zeros with size n-by-m:

• matrixName = ones(n, m)

Create a matrix of ones with size n-by-m:

• matrixName = rand(n, m)

Create a matrix of Random Numbers (between 0 and 1) 
with size n-by-m:

• matrixName = eye(n, m)

Create a unit diagonal matrix with a size n-by-m:
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• matrixName(rowNumber, colNumber)
• Example: access a value inside row 2 and column 3 of matA and then 

assign this value to the scalar variable scaB = matA(2,3) 

Access a specific value inside a matrix:

• Access all elements of the row number rn of matA and then assign 
these values to the row vector variable rV = matA(rn, : )

• Access all elements of the column number cn of matA and then assign 
these values to the column vector variable cV = matA( : , cn)

Access a whole row / column of a n-by-m matrix:

• max(matA)
• min(matA)
• size(matA)

Get information of a matrix:



29

• A multidimensional array in MATLAB® is an array with more than two dimensions (m3).
 Each element considered as a variable with a single value and m indexes.
 Its size defined by the maximal number of each index: n1  n2  …  nm.

Multidimensional arrays
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Basic operators
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Arithmetic Matrix Operators

Relational Operators

Logical Operators
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Conditional operators

if … else … end

• Evaluates an expression, and executes a group of statements
depending on the logical value of the expression.

• Syntax
if expression

1-statements (when the expression’s value is true) 
else

2-statements (when the expression’s value is false)
end

• Extended: if … elseif … … else … end
• An expression can include relational operators and logical operators. 
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switch … case 
… … otherwise 
… end

• Executes one of several groups of statements by comparing 
switch_expression to i-case_expression and choosing a true case.
 The switch block tests each case until one of the case 

expressions is true. 
• Syntax

switch switch_expression
case 1-case_expression

1-statements (when 1-case is true) 
case 2-case_expression

2-statements (when 2-case is true) 
…
otherwise

other-statements (for other cases)
end
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for … end

• Repeats a set of statements in a loop for a specified number of times.
• Syntax

for index =  iniVal : step : endVal
statements

end
• Increments index variable from iniVal to endVal by the positive step on 

each iteration, and repeat execution of statements until index is 
greater than endVal, or

• Decrements index when step is negative, and repeat execution of 
statements until index is less than endVal. 
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while … end • Repeats the execution of a group of statements in a loop 
while the expression is true.

• Syntax
while expression

statements
end
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break and continue statements

Can be used to control the operation 
of while and for loops:

 break terminates the execution 
of a loop and passes control to 
the next statement after the end
of the loop

 If a continue statement is 
executed in the body of a loop, 
the execution of the current pass 
through the loop will stop, and 
control will return to the top of 
the loop
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Input / output operators

Input 1. Request user input:
• Syntax

x = input(prompt) - numeric input
str = input(prompt , 's') - string input

• It displays the text in prompt and waits for the user to input a value 
and press the Return key.

• The user can enter expressions, e.g. pi/4 or rand(3), and can use 
variables in the workspace.

Example
v = input (‘Input flow velocity')
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2. Create dialog box to gather user:
• Syntax

answer = inputdlg (prompt,dlgtitle,dims)
prompt - displaying text; dlgtitle - box title;
dims - height (amount of line) and width (amount of text) of the 
dialog field that users can enter.
answer - string value

• It creates a dialog box containing one or more text edit fields and 
returns the values entered by the user.

Example
stationA = inputdlg ({'Name',‘Depth',‘Velocity'},...

‘Flow condition', [2  50; 1  5; 1  5]))
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Output

2. Graphic Visualization of data and results:
• Graphics functions including 2D / 3D plots, images and animation 

can be applied to visualize data and communicate results.
• Customize can be either interactively or programmatically.

1. Text information of a variable in the command window:
• MATLAB calls the display function, when a statement or expression is not 

terminated by a semicolon, to show information about an intermediate 
result, such as the values, size, type, and variable name: display(x)

• disp (x) shows the value of variable x.
• When you execute an expression without a semicolon, MATLAB assigns 

the result to a variable called ans, which the display function shows in the 
command window.
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Graphic can be customized 
directly from the figure window 
or in the m-code.

2D plot: Lines or 2D curves in one xy-coordinate plane
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Customize line 
property: color, style 
and marker.



42

Commenting and labeling a plot
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2D plot: Multiple curves in a page 
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2D plot: Logarithmic and semi-logarithmic curves



45

3D plot: 3D curves in a xyz-coordinate 
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Print graphic or save it to specific file format.
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Input/output data from/into a file

When data is large, the command-line arguments and input/output from/in terminal window 
are not efficient anymore. In such cases, the most common approach is to let the code 
read/write data from/into a pre-existing file.
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Example of writing a simple file 

x = 0:.1:1;
A = [x; exp(x)];
%

fileID = fopen('exp.txt','w');
fprintf(fileID,'%6s %12s\r\n','x','exp(x)');
fprintf(fileID,'%6.2f %12.8f\r\n',A);
fclose(fileID);

%
type exp.txt
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Functions
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• A wide variety of predefined mathematical functions in MATLAB, from basic functions to 
special functions.

• Find the name and description of a MathWorks® function from the Command Window or 
Editor using the Function browser.

MathWorks® functions
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• A complex program may be divided into several functions.
• These functions can improve readability of the code, as well as promote re-usability of the code.
• The format of a function is:

function returnValue = fcnName(inputValue)
Executable code

end

User-defined functions

2

2

1,2

0

4
2

ax bx c

b b acx
a

  

  


HOMEWORK 2

Write a MATBAB script to
• Define the function solv2 for solving a second-order equation,
• Apply this function for the following 2 cases:

1. a = 7, b = 2, c = 12
2. a = 4, b = -15, c = 2 

• Display the calculated results on the screen by using the 
statement display ,

• Write the results into a text-file.


