
1

Basic mathematical prerequisites
and MATLAB Programming

2

Linear Algebra Review

Arrays, matrices, vectors and scalars

3

• Scalar: A variable with a single number
• Array: A special variable stores multiple values (called elements).

 Multidimensional array: Arrays containing one or more arrays
 The dimension of an array indicates the number of indices you

need to select an element.
o For a two-dimensional array you need two indices to select

an element
o For a three-dimensional array you need three indices to

select an element
• Matrix:

 Two dimensional array of numbers
 Matrix dimension: [number of rows number of columns]
 Matrix A with [n m] dimension and elements (entries) Aij in the

ith row and jth column (indices start from left top to bottom right)
• Vector: one-dimensional array of numbers
• Vectors and scalars are special form of matrices:

 Column vector: [n1] matrix
 Row vector: [1m] matrix
 Scalar: [11] matrix

2 4 6
8 10 11
13 15 17
1 3 5

A

4

• Matrix addition:

2 4 6 1 3 5
?

8 7 5 2 1 3
A B C A B

Matrix manipulation

2 4
6 8 ?
1 3

D E C D

• Matrix multiplication:

?L A B

?M A D

?N D A
1

K

ij ik kj
k

M A D

ij ij ijC A B

5

• Matrix multiplication properties:

 Not commutative
 Associative

A D D A

 A D B A D B A D B

• Transpose matrix:
'T

ij ji

Q A A
Q A

• Scalar multiplication:
: number

ij ij

Q A A
Q A

6

• Identify (square) matrix:

1 0 ... 0
0 1 ... 0
...
0 0 ... 1

I R R I R I

• Inverse of a square matrix: 1 1R R R R I

Matrices that don’t have an inverse are “singular” or “degenerate”

7

Basic MATLAB Programming

• Basic interface
• Working with a script file (m-file)
• Basic variables

 Declaring & manipulating matrix variables
• Basic operators

 Conditional operators
 Input & output operators

• Functions

8

Basic interface

9

demonstrates the
address, where
different files are
restored or loaded
(working folder).

10

Type your
instructions here
and press ENTER
to execute them.

a list of instructions
executed by MATLAB

a list of variables
created by MATLAB

Example: declare a
column vector cv with
values 1, 2 and 3.

11

 Create new variable
 Manipulate variable:

edit value, rename,
delete, duplicate, etc.

Two different ways to assign
values to a new-variable:
1. Using the command window,
2. Double clicking on the new-

variable.

12

Example: declare a
row vector rv with
values 4, 5 and 6.

13

to see help:
 type help at the

command window, or
 press the help button.

14

to see more details:
 type help or demo at

the command window.

15

Useful Commands and Functions in the interactive mode

16

Keyboard shortcuts

• The up arrow key:

 It repeatedly recalls the previously entered commands.

 Likewise, typing the first characters of previously entered line and pressing
the up arrow key displays the full command line.

• The Tab Key helps to input the MATLAB-functions names

• The semicolon symbol at the end of a line suppresses the screen output.

17

Working with a script-file (m-file)

1. Create a file with a list of commands
(called as script-file or m-file),

2. Save the file, and

3. Run the file.

18

to create an m-file (script-file)
containing different MATLAB-
commands:
 type edit at the command

window, or
 press the New button, and then

Script button.

19

This editor can be used to
write a MATLAB program.

20

Save m-file as V2_01.m
in the working folder.

21

Run program V2_01.m.

22

Basic variables

23

 May contain characters, numbers and symbols
 No numbers or symbols in front of them.

Example of illegal variable names: 1var ; #aaa
 MATLAB makes a difference between capital or small letters.

Name:

 Three types of variables values: numeric, binary logical and string
 Three forms: scalar, matrix, multidimensional array

Value:

To declare a MATLAB-variable, type in a variable name and specify its value.

24

 Single value
 MATLAB will decide on the data type automatically,

so you don’t have to declare its data type.

Scalar variables

25

 Predefined scalar variables:
In MATLAB some names have been reserved for specific variables.
Creation of a new variable with the name of a predefined variable
should be avoided.

26

• Matrix elements can be considered as a two dimensional array.
 Its size defined by the number of row and column: nr-by-nc

 Each element considered as a variable with a single value and two indexes.
 The element values in a matrix variable defined in square brackets.

• To create a matrix, use the comma to separate each value in a row, and a semicolon to enter
the value for a new row.

Matrix variables

• Scalars and
vectors are special
form of matrices.

27

Declaring & manipulating matrix variables

• matrixName = zeros(n, m)

Create a matrix of zeros with size n-by-m:

• matrixName = ones(n, m)

Create a matrix of ones with size n-by-m:

• matrixName = rand(n, m)

Create a matrix of Random Numbers (between 0 and 1)
with size n-by-m:

• matrixName = eye(n, m)

Create a unit diagonal matrix with a size n-by-m:

28

• matrixName(rowNumber, colNumber)
• Example: access a value inside row 2 and column 3 of matA and then

assign this value to the scalar variable scaB = matA(2,3)

Access a specific value inside a matrix:

• Access all elements of the row number rn of matA and then assign
these values to the row vector variable rV = matA(rn, :)

• Access all elements of the column number cn of matA and then assign
these values to the column vector variable cV = matA(: , cn)

Access a whole row / column of a n-by-m matrix:

• max(matA)
• min(matA)
• size(matA)

Get information of a matrix:

29

• A multidimensional array in MATLAB® is an array with more than two dimensions (m3).
 Each element considered as a variable with a single value and m indexes.
 Its size defined by the maximal number of each index: n1 n2 … nm.

Multidimensional arrays

30

Basic operators

31

Arithmetic Matrix Operators

Relational Operators

Logical Operators

32

Conditional operators

if … else … end

• Evaluates an expression, and executes a group of statements
depending on the logical value of the expression.

• Syntax
if expression

1-statements (when the expression’s value is true)
else

2-statements (when the expression’s value is false)
end

• Extended: if … elseif … … else … end
• An expression can include relational operators and logical operators.

33

switch … case
… … otherwise
… end

• Executes one of several groups of statements by comparing
switch_expression to i-case_expression and choosing a true case.
 The switch block tests each case until one of the case

expressions is true.
• Syntax

switch switch_expression
case 1-case_expression

1-statements (when 1-case is true)
case 2-case_expression

2-statements (when 2-case is true)
…
otherwise

other-statements (for other cases)
end

34

for … end

• Repeats a set of statements in a loop for a specified number of times.
• Syntax

for index = iniVal : step : endVal
statements

end
• Increments index variable from iniVal to endVal by the positive step on

each iteration, and repeat execution of statements until index is
greater than endVal, or

• Decrements index when step is negative, and repeat execution of
statements until index is less than endVal.

35

while … end • Repeats the execution of a group of statements in a loop
while the expression is true.

• Syntax
while expression

statements
end

36

break and continue statements

Can be used to control the operation
of while and for loops:

 break terminates the execution
of a loop and passes control to
the next statement after the end
of the loop

 If a continue statement is
executed in the body of a loop,
the execution of the current pass
through the loop will stop, and
control will return to the top of
the loop

37

Input / output operators

Input 1. Request user input:
• Syntax

x = input(prompt) - numeric input
str = input(prompt , 's') - string input

• It displays the text in prompt and waits for the user to input a value
and press the Return key.

• The user can enter expressions, e.g. pi/4 or rand(3), and can use
variables in the workspace.

Example
v = input (‘Input flow velocity')

38

2. Create dialog box to gather user:
• Syntax

answer = inputdlg (prompt,dlgtitle,dims)
prompt - displaying text; dlgtitle - box title;
dims - height (amount of line) and width (amount of text) of the
dialog field that users can enter.
answer - string value

• It creates a dialog box containing one or more text edit fields and
returns the values entered by the user.

Example
stationA = inputdlg ({'Name',‘Depth',‘Velocity'},...

‘Flow condition', [2 50; 1 5; 1 5]))

39

Output

2. Graphic Visualization of data and results:
• Graphics functions including 2D / 3D plots, images and animation

can be applied to visualize data and communicate results.
• Customize can be either interactively or programmatically.

1. Text information of a variable in the command window:
• MATLAB calls the display function, when a statement or expression is not

terminated by a semicolon, to show information about an intermediate
result, such as the values, size, type, and variable name: display(x)

• disp (x) shows the value of variable x.
• When you execute an expression without a semicolon, MATLAB assigns

the result to a variable called ans, which the display function shows in the
command window.

40

Graphic can be customized
directly from the figure window
or in the m-code.

2D plot: Lines or 2D curves in one xy-coordinate plane

41

Customize line
property: color, style
and marker.

42

Commenting and labeling a plot

43

2D plot: Multiple curves in a page

44

2D plot: Logarithmic and semi-logarithmic curves

45

3D plot: 3D curves in a xyz-coordinate

46

Print graphic or save it to specific file format.

47

Input/output data from/into a file

When data is large, the command-line arguments and input/output from/in terminal window
are not efficient anymore. In such cases, the most common approach is to let the code
read/write data from/into a pre-existing file.

48

Example of writing a simple file

x = 0:.1:1;
A = [x; exp(x)];
%

fileID = fopen('exp.txt','w');
fprintf(fileID,'%6s %12s\r\n','x','exp(x)');
fprintf(fileID,'%6.2f %12.8f\r\n',A);
fclose(fileID);

%
type exp.txt

49

Functions

50

• A wide variety of predefined mathematical functions in MATLAB, from basic functions to
special functions.

• Find the name and description of a MathWorks® function from the Command Window or
Editor using the Function browser.

MathWorks® functions

51

• A complex program may be divided into several functions.
• These functions can improve readability of the code, as well as promote re-usability of the code.
• The format of a function is:

function returnValue = fcnName(inputValue)
Executable code

end

User-defined functions

2

2

1,2

0

4
2

ax bx c

b b acx
a

HOMEWORK 2

Write a MATBAB script to
• Define the function solv2 for solving a second-order equation,
• Apply this function for the following 2 cases:

1. a = 7, b = 2, c = 12
2. a = 4, b = -15, c = 2

• Display the calculated results on the screen by using the
statement display ,

• Write the results into a text-file.

