Basic mathematical prerequisites and MATLAB Programming

Linear Algebra Review

Arrays, matrices, vectors and scalars

- Scalar: A variable with a single number
- Array: A special variable stores multiple values (called elements).
 - Multidimensional array: Arrays containing one or more arrays
 - The dimension of an array indicates the number of indices you need to select an element.
 - For a two-dimensional array you need two indices to select an element
 - For a three-dimensional array you need three indices to select an element
- Matrix:
 - Two dimensional array of numbers
 - Matrix dimension: [number of rows × number of columns]
 - Matrix A with [$n \times m$] dimension and elements (entries) A_{ij} in the ith row and jth column (indices start from left top to bottom right)
- Vector: one-dimensional array of numbers
- Vectors and scalars are special form of matrices:
 - Column vector: [n×1] matrix
 - Row vector: [1×m] matrix
 - Scalar: [1×1] matrix

	2	4	6
A	8	10	11
4 =	13	15	17
	1	3	5

Matrix manipulation

• Matrix addition:

$$A = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 7 & 5 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 1 & 3 \end{bmatrix} \quad \Rightarrow C = A + B = ? \qquad C_{ij} = A_{ij} + B_{ij}$$
$$D = \begin{bmatrix} 2 & 4 \\ 6 & 8 \\ 1 & 3 \end{bmatrix} \qquad \Rightarrow E = C + D = ?$$

• Matrix multiplication:

$$L = A \times B = ?$$

$$M = A \times D = ?$$

$$M_{ij} = \sum_{k=1}^{K} A_{ik} D_{kj}$$

$$N = D \times A = ?$$

• Matrix multiplication properties:

- Not commutative
$$A \times D \neq D \times A$$

- Associative $A \times D \times B = (A \times D) \times B = A \times (D \times B)$

• Scalar multiplication:

$$Q = \lambda \times A = A \times \lambda$$

 $Q_{ij} = \lambda A_{ij}$

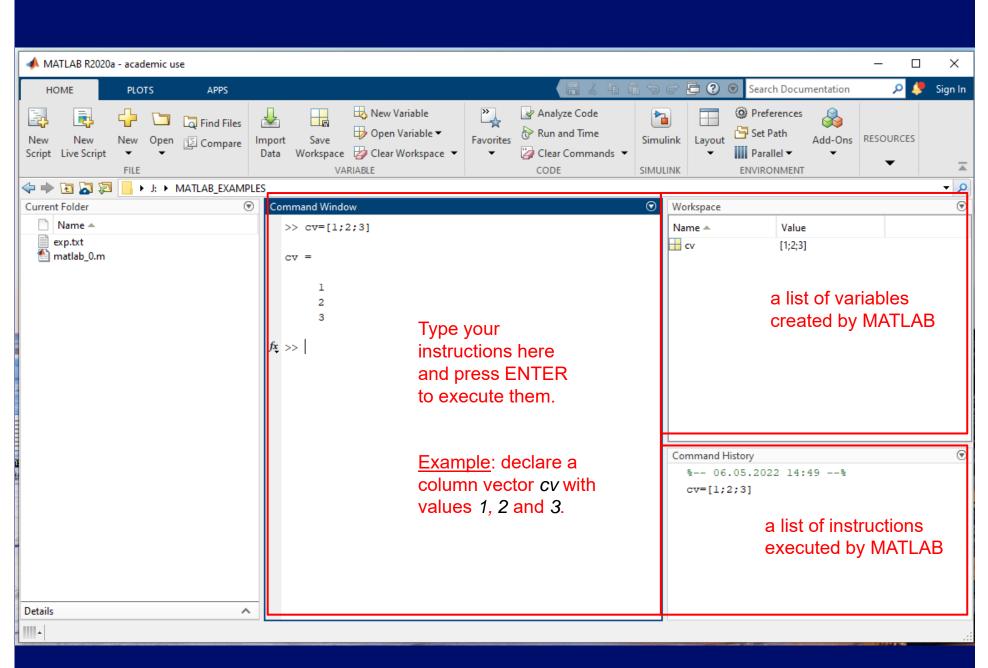
• Transpose matrix:

$$Q = A^T = A$$

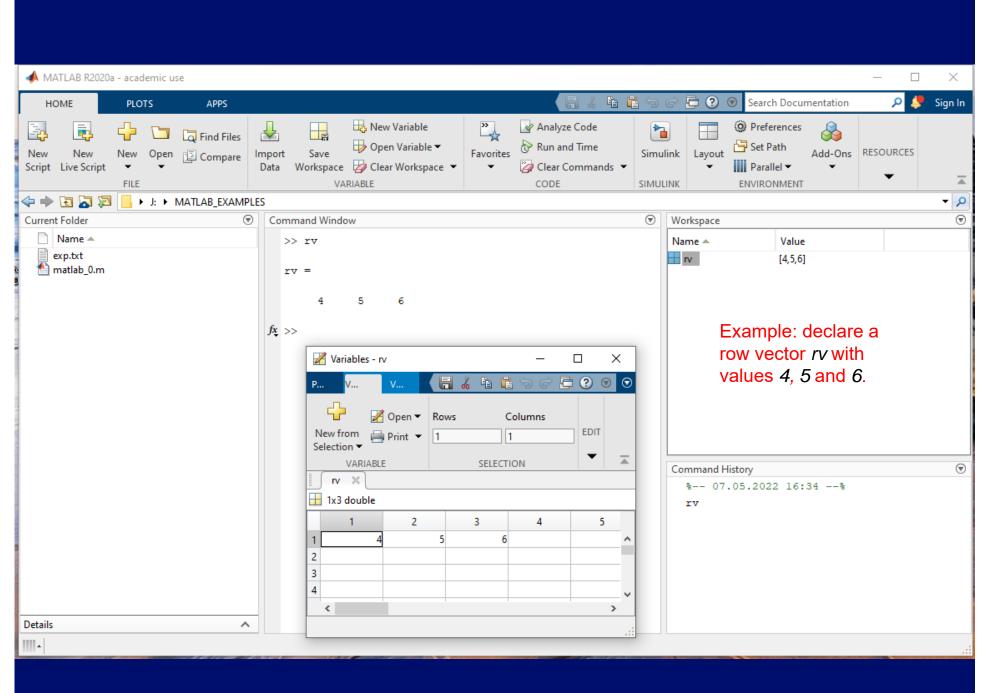
 $Q_{ii} = A_{ii}$

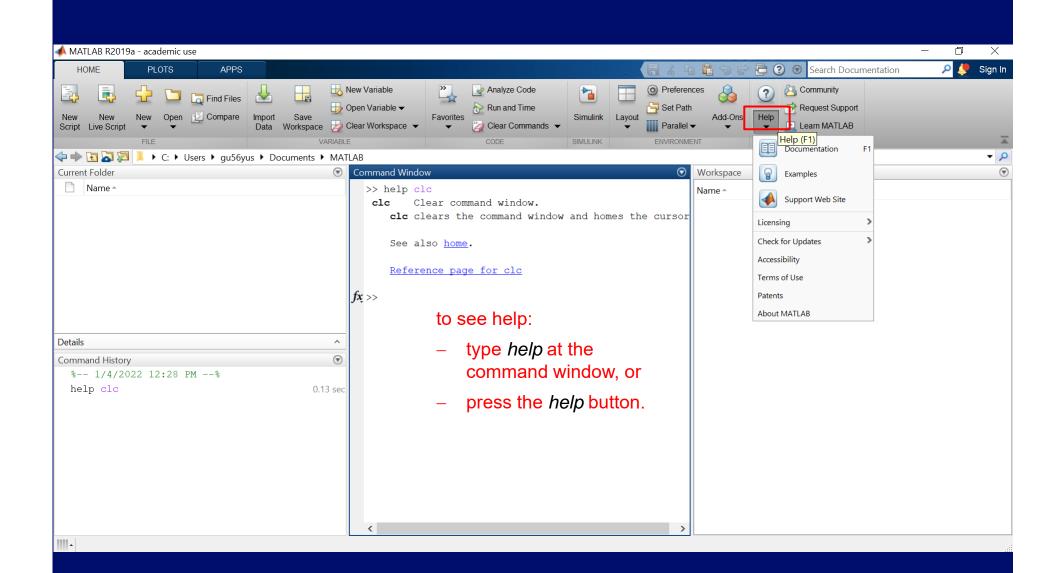
• Identify (square) matrix: $I \times R = R \times I = R$ $I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$

• Inverse of a square matrix:
$$R^{-1} \times R = R \times R^{-1} = I$$


Matrices that don't have an inverse are "singular" or "degenerate"

Basic MATLAB Programming


- Basic interface
- Working with a script file (m-file)
- Basic variables
 - Declaring & manipulating matrix variables
- Basic operators
 - Conditional operators
 - Input & output operators
- Functions

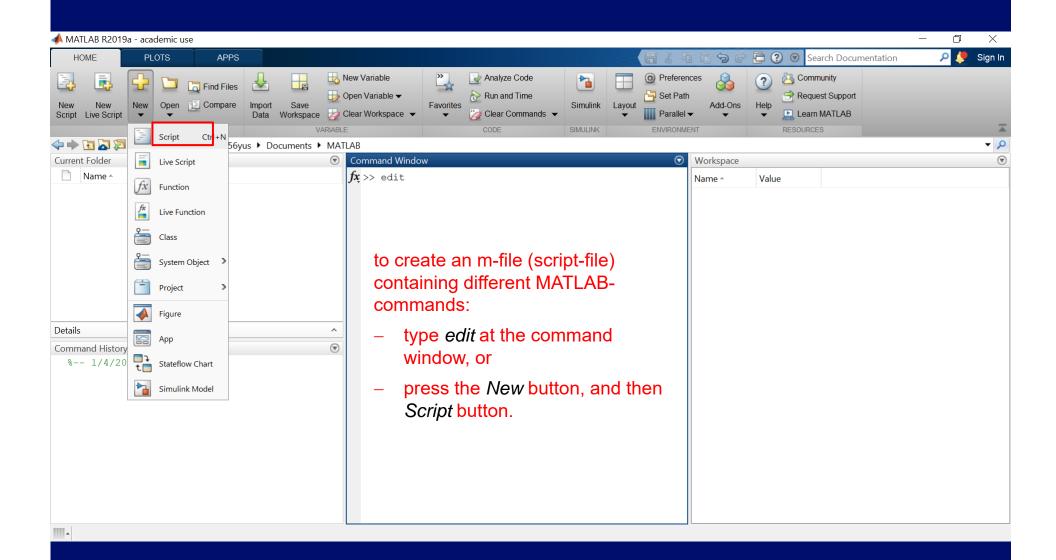

Basic interface

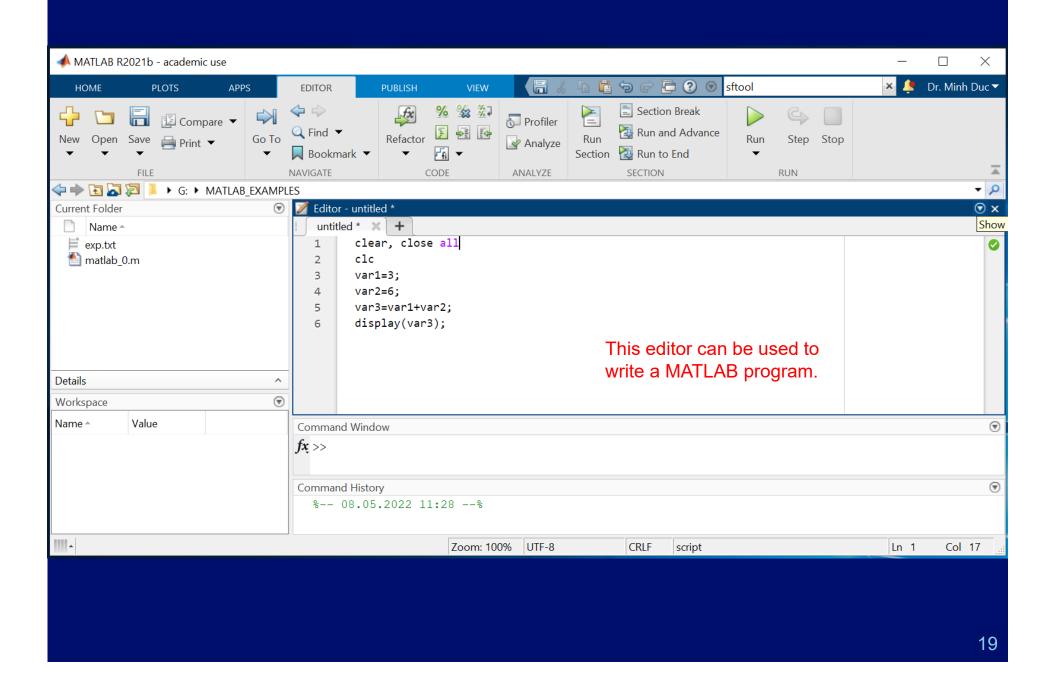
📣 MATLAB R2020a - academic use				_	
HOME PLOTS APPS			ଚଟ 🖻 ? 💿 😪	arch Documentation	🔎 🌽 Sign In
Script Live Script FILE FILE	Import Save Data Workspace VARIABLE	 Clear Commands 	imulink Layout Pa	eferences t Path Add-Ons RESO arallel T T T T T T T T T T T T T T T T T T T	•
← → 🔄 🖾 🖉 📙 → J: → MATLAB_EXAMPLE Current Folder	ES Command Window	(Workspace		 Q
	fx >>		Name A	Value	
matlab_0.m demonstrates the address, where different files are restored or loaded (working folder).			Command History		$\overline{\mathbf{O}}$
			% 06.05.2	022 14:49%	
Details ^					

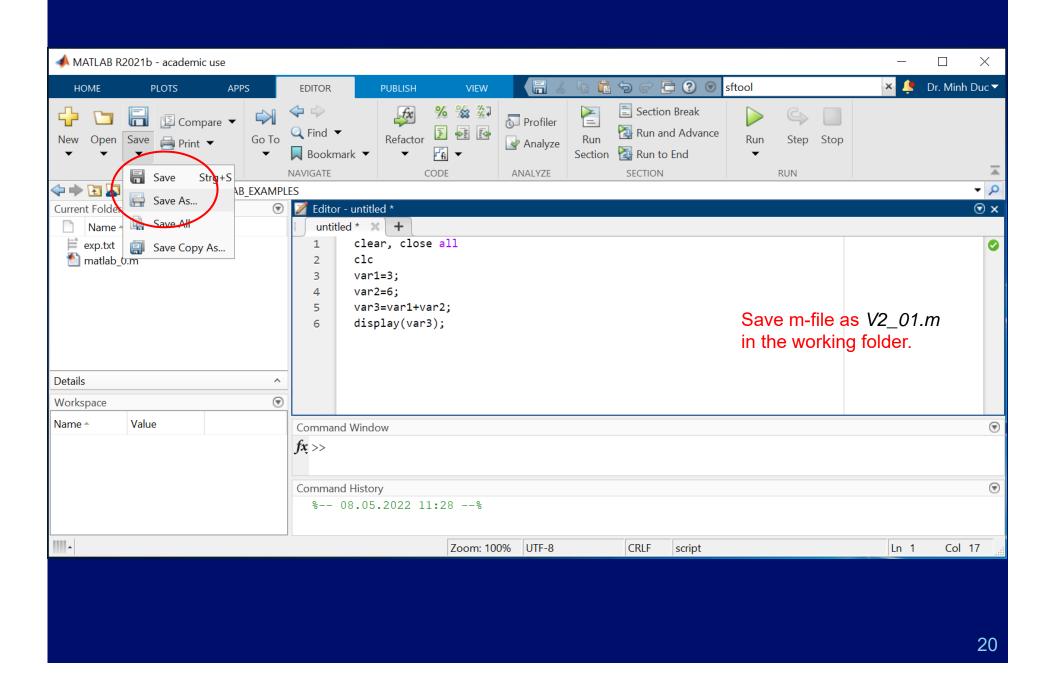
MATLAB R	2020a - academic u PLOTS	se APPS		New Variable	53	alyze Code	i	1	Search Docume	ntation	 2 4	× Sign In
New New Script Live Sc Current Folder	/ New Open ript ← ← FILE	MATLAB_EXAMP	Import Save Data Workspace	- Create I - Manipul edit valu	Favorites 🔂 Ru	e e:	Simulink SIMULINK	Two dif values 1. Us 2. Do val	Parallel ENVIRONMENT Value [1;2;3] ferent way to a new ing the co puble click riable. ory 5.2022 14:49	ys to as variable ommane ing on	▼ ssign e: d wind	
Details		^										

Help 🔿 🔆 🥨 🛛 MATLAB 🗶 🕇				
Documentation	Examples	Functions	Search Help	Q
CONTENTS Cla	ose			
MATLAB	 MA 	TLAB		
Getting Started with MATLAB	The L	anguage of Technical Computing		
Language Fundamentals	Millio	ns of engineers and scientists worldwide use MATLAB [®] to analyze and design the systems and	products 🖹 Release Notes	
Data Import and Analysis		forming our world. The matrix-based MATLAB language is the world's most natural way to expre-		
Mathematics	comp	utational mathematics. Built-in graphics make it easy to visualize and gain insights from data. Th		
Graphics		op environment invites experimentation, exploration, and discovery. These MATLAB tools and pilities are all rigorously tested and designed to work together.		
Programming		AB helps you take your ideas beyond the desktop. You can run your analyses on larger data se	to and	
App Building		up to clusters and clouds. MATLAB code can be integrated with other languages, enabling you	·	
Software Development Tools	deplo	y algorithms and applications within web, enterprise, and production systems.		
External Language Interfaces				
Environment and Settings	Gett	ing Started		
Simulink	Learn	the basics of MATLAB		
5G Toolbox	1 and	man Fundamentela		
Aerospace Blockset		guage Fundamentals ix, array indexing and manipulation, data types, operators	to see more details:	
Aerospace Toolbox	Cynta	w, and y monthly and manipulation, and types, operative	to see more details.	
Antenna Toolbox		Import and Analysis	 type help or demo 	o <mark>at</mark>
Audio Toolbox	Impor	t and export data, including large files; preprocess data, visualize and explore	the command win	
Automated Driving Toolbox	Math	nematics		
AUTOSAR Blockset		r algebra, differentiation and integrals, Fourier transforms, and other mathematics		
Bioinformatics Toolbox				
Communications Toolbox		phics		
Computer Vision Toolbox	▼ I WO-	and three-dimensional plots, images, animation		

Useful Commands and Functions in the interactive mode


Command/Function	Meaning
clc	Clear Command Window
clear	Remove items from workspace
who, whos	List variables in workspace
cd	Change working directory
pwd	Display current directory
computer	Identify information about computer on which MATLAB is running
ver	Display version information for MathWorks products
quit	Terminate MATLAB
exit	Terminate MATLAB (same as quit)


Keyboard shortcuts


- The up arrow key:
 - It repeatedly recalls the previously entered commands.
 - Likewise, typing the first characters of previously entered line and pressing the up arrow key displays the full command line.
- The Tab Key helps to input the MATLAB-functions names
- The semicolon symbol at the end of a line suppresses the screen output.

Working with a script-file (m-file)

- 1. Create a file with a list of commands (called as script-file or m-file),
- 2. Save the file, and
- 3. Run the file.

📣 MATLAB R2	021b - academic	use									_	\Box \times
HOME	PLOTS	APPS	EDITOR	PUBLISH	VIEW		ħ 🛱	5 d 🗗 🕐	🗑 sftool		× 🔅	Dr. Minh Duc 🔻
New Open	Save			riterateter	E EF EC	🔊 Profiler 🚽 Analyze	Run Section	Section Break Run and Adv Run to End		Step Stop		
	FILE		NAVIGATE	C	ODE	ANALYZE		SECTION		RUN		Ā
< 🔶 🔁 🖉	🔁 📙 🕨 G: 🕨 N	MATLAB_EXAMP										م +
Current Folder		$\overline{\mathbf{v}}$			/IPLES\V2_01.m							⊙×
Name 🗠			V2_01.m	× + clear, clo								
exp.txt matlab_C V2_01.m Details Workspace	l.m	^ •	1 2 3 4 5 6	clc var1=3; var2=6; var3=var1- display(va	⊦var2;				Run	program \	/2_01.m.	
Name +	Value		Command Win	dow								
var1 var2 var3	3 6 9		var3 = 9 <i>fx</i> >>									~
					Zoom: 1009	% UTF-8		CRLF scrip	t		Ln 1	Col 17

Basic variables

To declare a MATLAB-variable, type in a variable name and specify its value.

—	May conta	in characters	, numbers and	lsymt	pols
---	-----------	---------------	---------------	-------	------

Name:

- No numbers or symbols in front of them.
 Example of illegal variable names: *1var*; *#aaa*
- MATLAB makes a difference between capital or small letters.

Value:

- Three types of variables values: numeric, binary logical and string
- Three forms: scalar, matrix, multidimensional array

Scalar variables

- Single value
- MATLAB will decide on the data type automatically, so you don't have to declare its data type.

📣 MATLAB R2020a - academic	se					_		×
HOME PLOTS	APPS	EDITOR PUBL	ISH VIEW) 🕝 🖨 🕐 🖲 Sear	rch Documentation	P 🦊	Sign In
New Open Save	are 🔻 📢 Go To 🕇		Breakpoints Run	Run and 🖳 Advance Ru	un and Time			Ā
	MATLAB_EXAMPLE							- P
Current Folder Name A exp.txt M matlab_0.m	©	<pre>Editor - J:\MATLAB_EX/ matlab_0.m x + 1 - clear, clo 2 - clc 3 % 4 - varl = 3; 5 - var2 = 6; 6 - var3 = var 7 - disp(var3) 8 % 9 - var4 = 'hel 10 - disp(var4) 11 % Command Window</pre>	se all 1+var2;	© ×	Name A var1 var2 var3 ch var4	Value 3 6 9 'hello' 22 13:56%		$\overline{\bullet}$
matlab_0.m (Script)	^	fx			,			

– Predefined scalar variables:

In MATLAB some names have been reserved for specific variables. Creation of a new variable with the name of a predefined variable should be avoided.

Name	Variable		
Inf	∞		
Eps	2.2204e-16		
Pi	3.1416		
NaN	Undefined		

Matrix variables

- Matrix elements can be considered as a two dimensional array.
 - Its size defined by the number of row and column: n_r -by- n_c
 - Each element considered as a variable with a single value and two indexes.
 - The element values in a matrix variable defined in square brackets.
- To create a matrix, use the comma to separate each value in a row, and a semicolon to enter the value for a new row.

 Scalars and vectors are special form of matrices.

📣 MATLAB R2020a -	academic use											- 🗆	×
HOME	PLOTS	APPS	EDITOR	PUBLISH	H VIEV	v		8 / 6 6	50	d 🗗 🕄 🕤	Search Documentation	🏓 🤦	Sign In
FILE	G Find Files E Compare ▼ Print ▼	C Find • NAVIGATE	Comment 9 Indent ED	•	Breakpoints	Run	Run and Advance	Run Section Advance RUN	Run a Tim	and			Ā
	→ J: → MATL												- <u>P</u>
Current Folder				ATLAB_EXAM	PLES\matlab_0.m	ı				Workspace			۲
exp.txt matlab_0.m			11 % 12 - mat 13 - dis 14 % 15 % 16 - vec 17 - dis 18 %	1 = [1,2, pp(mat1) = mat1(pp(vec1)	3;4,5,6;7,8 :,2); Input flow		ty (m/s)	: ');	^ -	Name Amata mat1 var1 var2 var3 ch var4 vec1	Value [1,2,3;4,5,6;7,8,9] 3 6 9 'hello' [2;5;8]		
					0; % (cm/s)		_	>	×				
			hello 1 4 7 2 5 8	5	3 6 9					Command Histor % 09.05 matlab_0	y .2022 13:56%		•
matlab_0.m (Script)		^	fx.						~				
1111+													

Declaring & manipulating matrix variables

Create a matrix of zeros with size *n*-by-*m*:

• matrixName = zeros(*n*, *m*)

Create a matrix of ones with size *n*-by-*m*:

matrixName = ones(n, m)

Create a matrix of Random Numbers (between 0 and 1) with size *n*-by-*m*:

• matrixName = rand(*n*, *m*)

Create a unit diagonal matrix with a size *n*-by-*m*:

• matrixName = eye(*n*, *m*)

Access a specific value inside a matrix:

- matrixName(rowNumber, colNumber)
- <u>Example</u>: access a value inside row 2 and column 3 of **matA** and then assign this value to the scalar variable **scaB** = **matA**(2,3)

Access a whole row / column of a *n*-by-*m* matrix:

- Access all elements of the row number *m* of matA and then assign these values to the row vector variable rV = matA(*rn*, :)
- Access all elements of the column number *cn* of matA and then assign these values to the column vector variable *cV* = matA(:, *cn*)

Get information of a matrix:

- max(*matA*)
- min(matA)
- size(matA)

Multidimensional arrays

- A multidimensional array in MATLAB® is an array with more than two dimensions ($m \ge 3$).
 - Each element considered as a variable with a single value and m indexes.
 - Its size defined by the maximal number of each index: $n_1 \times n_2 \times ... \times n_m$.

Image: Save intermediate intermed	📣 MATLAB R2020a - academic use			- 🗆 X
New Open Save Comment % % % ? Breakpoints Run Run and Run	HOME PLOTS APPS	EDITOR PUBLISH VIEW	🖥 / h t 🦘 🕈 🗗 🕐 💌	Search Documentation 🛛 🔎 🌽 Sign In
Image: Solution of the second seco	New Open Save I ⊂ Compare I ⊂ Compare ✓ ✓ ✓ I ⊂ Compare I ⊂ Compare	Comment % ‰ ☆ → Breakpoints Run Run and → Advance	Advance Run and Time	
Current Folder Curre				م -
exp.txt if - vecl = matl(:,2); matlab_0.asv if - disp(vecl) matlab_0.m matlab_0.m if - disp(mat2) disp(mat2) disp(mat2) if - disp(mat2) if - disp(mat2) if - if - mularrl(:,:,2)=mat1; if - if - if - if - disp(mularrl) if - if - if - if - if - if - if - if - if - if - if - if - if - if - if - if - if - if - if - if - if - if - if - <td></td> <td>Z Editor - J:\MATLAB_EXAMPLES\matlab_0.m</td> <td>💿 🗙 Workspace</td> <td></td>		Z Editor - J:\MATLAB_EXAMPLES\matlab_0.m	💿 🗙 Workspace	
4 5 6 Command History Command History <td>exp.txt matlab_0.asv</td> <td><pre>16 - vecl = matl(:,2); 17 - disp(vecl) 18 % 19 % 20 - mat2 = [10,11,12;13,14,15;16,17,18]; 21 - disp(mat2) 22 % 23 - mularrl(:,:,1)=mat1; 24 - mularrl(:,:,2)=mat2; 25 - disp(mularrl) 26 %</pre></td> <td>★ mat1 mat2 mularr1 var1 var2 var3 ch var4 vec1</td> <td>[1,2,3;4,5,6;7,8,9] [10,11,12;13,14,15;16, <i>3x3x2 double</i> 3 6 9 'hello'</td>	exp.txt matlab_0.asv	<pre>16 - vecl = matl(:,2); 17 - disp(vecl) 18 % 19 % 20 - mat2 = [10,11,12;13,14,15;16,17,18]; 21 - disp(mat2) 22 % 23 - mularrl(:,:,1)=mat1; 24 - mularrl(:,:,2)=mat2; 25 - disp(mularrl) 26 %</pre>	★ mat1 mat2 mularr1 var1 var2 var3 ch var4 vec1	[1,2,3;4,5,6;7,8,9] [10,11,12;13,14,15;16, <i>3x3x2 double</i> 3 6 9 'hello'
$(:,:,2) = \begin{bmatrix} 10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18 \end{bmatrix}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Command Histor % 09.05. 3x matlab_0	
matlab_0.m (Script) /s /utread UTF-8 script Ln 56 Col 2		J. * >>		Ln 56 Col 2

Basic operators

Arithmetic Matrix Operators

Symbol	Role
+	Addition
-	Subtraction
.*	Element-wise multiplication
*	Matrix multiplication
./	Element-wise right division
/	Matrix right division
.\	Element-wise left division
١	Matrix left division
.^	Element-wise power
^	Matrix power
'	Matrix Transpose

Relational Operators

Symbol	Role
==	Equal to
~=	Not equal to
>	Greater than
>=	Greater than or equal to
<	Less than
<=	Less than or equal to

Logical Operators

Symbol	Role
&	Logical AND
	Logical OR
&&	Logical AND (with short-circuiting)
11	Logical OR (with short-circuiting)
~	Logical NOT

Conditional operators

- Evaluates an *expression*, and executes a group of *statements* depending on the logical value of the expression.
- if ... else ... end Syntax
 - if expression 1-statements (when the expression's value is true) else 2-statements (when the expression's value is false)
 - end
 - Extended: if ... elseif else ... end
 - An *expression* can include relational operators and logical operators.

```
% EXAMPLE: Determine if a value falls within a specified range
x = 10;
minVal = 2;
maxVal = 6;
if (x >= minVal) && (x <= maxVal)
    disp('Value within specified range.')
elseif (x > maxVal)
    disp('Value exceeds maximum value.')
else
    disp('Value is below minimum value.')
end
```

- Executes one of several groups of statements by comparing switch_expression to i-case_expression and choosing a true case.
 - The switch block tests each case until one of the case expressions is true.
- Syntax

switch switch_expression
case 1-case_expression
1-statements (when 1-case is true)
case 2-case_expression
2-statements (when 2-case is true)

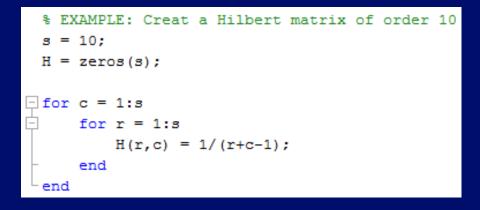
... otherwise

other-statements (for other cases) end

EXAMPLE:

Display different text conditionally, depending on a value entered at the command prompt.

```
n = input('Enter a number: ');
switch n
    case -1
        disp('negative one')
    case 0
        disp('zero')
    case 1
        disp('positive one')
    otherwise
        disp('other value')
end
```


switch ... case ... otherwise ... end • Repeats a set of statements in a loop for a specified number of times.

for ... end

for index = iniVal : step : endVal
 statements
end

Syntax

- Increments *index* variable from *iniVal* to *endVal* by the positive *step* on each iteration, and repeat execution of *statements* until *index* is greater than *endVal*, or
- Decrements *index* when *step* is negative, and repeat execution of *statements* until *index* is less than *endVal*.

while ... end

- Repeats the execution of a group of *statements* in a loop while the *expression* is true.
- Syntax

while expression statements end

% EXAMPLE: Use a while loop to calculate factorial(10) n = 10; f = n; while n > 1 n = n-1; f = f*n; end disp(['n! = ' num2str(f)])

break and continue statements

Can be used to control the operation of *while* and *for* loops:

 break terminates the execution of a loop and passes control to the next statement after the end of the loop

```
    If a continue statement is
executed in the body of a loop,
the execution of the current pass
through the loop will stop, and
control will return to the top of
the loop
```

```
    for i = 1:5
        if i == 3;
            break;
        end
        fprintf('i = %d\n',i);
    end
    disp('End of loop!');
```

```
    for i = 1:5
        if i == 3;
            continue;
        end
        fprintf('i = %d\n',i);
    end
    disp('End of loop!');
```

Input / output operators

Input

- 1. Request user input:
 - Syntax
 - x = input(prompt)

- numeric input
- str = input(prompt, 's')
- string input
- It displays the text in *prompt* and waits for the user to input a value and press the **Return** key.
- The user can enter expressions, e.g. *pi/4* or *rand(3)*, and can use variables in the workspace.

Example

v = **input** ('Input flow velocity')

2. Create dialog box to gather user:

• Syntax

answer = **inputdlg** (*prompt*,*dlgtitle*,*dims*)

prompt - displaying text; *dlgtitle* - box title;

dims - height (amount of line) and width (amount of text) of the dialog field that users can enter.

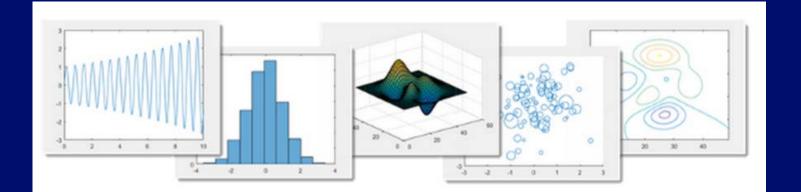
answer - string value

• It creates a dialog box containing one or more text edit fields and returns the values entered by the user.

Example

stationA = inputdlg ({'Name', 'Depth', 'Velocity'},...

'Flow condition', [2 50; 1 5; 1 5]))

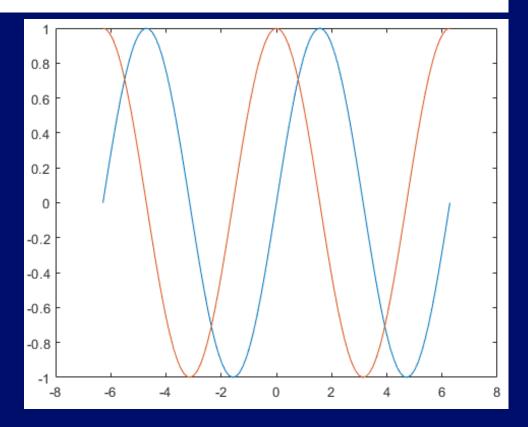

Output

1. Text information of a variable in the command window:

- MATLAB calls the display function, when a statement or expression is not terminated by a semicolon, to show information about an intermediate result, such as the values, size, type, and variable name: display(x)
- **disp (x)** shows the value of variable **x**.
- When you execute an expression without a semicolon, MATLAB assigns the result to a variable called **ans**, which the **display** function shows in the command window.

2. Graphic Visualization of data and results:

- Graphics functions including 2D / 3D plots, images and animation can be applied to visualize data and communicate results.
- Customize can be either interactively or programmatically.



<u>2D plot</u>: Lines or 2D curves in one xy-coordinate plane

```
% EXAMPLE: Plot sine and cosine functions between -2pi and 2pi
x = linspace(-2*pi,2*pi);
y1 = sin(x);
y2 = cos(x);
figure
```

```
plot(x, y1, x, y2)
```

Graphic can be customized directly from the figure window or in the m-code.

Symbol	Color (R G B)	Symbol	Line Style	Marker	Description
r	red (1 0 0)	-	solid line (default)	+	plus sign
g	green (0 1 0)		dashed line	0	circle
b	blue $(0 \ 0 \ 1)$:	dotted line	*	asterisk
у	yellow (1 1 0)		dash-dot line		point
m	magenta (1 0 1)			x	cross
	(a deep purplish red)			s	square
c	cyan (0 1 1)			d	diamond
	(greenish blue)			^	upward pointing
w	white (1 1 1)				triangle
k	black $(0 \ 0 \ 0)$			v	downward pointing
					triangle
				>	right pointing triangle
				<	left pointing triangle
				р	pentagram
				h	hexagram

EXAMPLE:

Customize line property: color, style and marker. Plot the sine function over three different ranges using different line styles, colors, and markers.

```
figure
t = 0:pi/20:2*pi;
plot(t,sin(t),'-.r*')
hold on
plot(t,sin(t-pi/2),'--mo')
plot(t,sin(t-pi),':bs')
hold off
```

Commenting and labeling a plot

Example:

Plot *sin* and *cosine* functions in the range of $[-\pi,\pi]$

```
x=-pi:pi/10:pi;
y1=sin(x);
y2=cos(x);
plot(x,y1,'k-',x,y2,'m-');
xlabel'X';
ylabel'Y';
legend({'sin(x)','cos(x)'});
text(2,0.2,'y=sin(x)');
text(-2,0.2,'y=cos(x)');
```

xlabel (' text')

writes a text on x-axis.

```
ylabel (' text ')
```

writes a text on y-axis.

```
title (' title')
```

writes title of a curve.

text (x0,y0,'text on the curve')

writes text on x0,y0 coordinate.

legend ({'comment'})

provides a comment on the page.

<u>2D plot</u>:

Multiple curves in a page

subplot(a,b,c)

where *a* is number of rows, *b* is number of columns, and *c* is the index of each cell from top left.

Example:

Plot four curves of y = cos(x), y = cos(2x), y = cos(3x), and y = cos(4X) on a page

```
x=(-4:0.1:4);
```

```
y1=cos(x);
y2=cos(2*x);
y3=cos(3*x);
```

```
y4 = cos(4 * x);
```

```
subplot (2,2,1); plot(x,y1,'k.');title 'y=cos(x)';
xlabel 'x';ylabel 'y';
subplot (2,2,2); plot(x,y2,'k.');title 'y=cos(2x)';
xlabel 'x';ylabel 'y';
subplot (2,2,3); plot(x,y2,'k.');title 'y=cos(3x)';
xlabel 'x';ylabel 'y';
subplot (2,2,4); plot(x,y2,'k.');title 'y=cos(4x)';
xlabel 'x';ylabel 'y';
```

<u>2D plot</u>: Logarithmic and semi-logarithmic curves

semilogy(x,y)
loglog(x,y)

Example:

For x = 1:100 and $y = \exp(x)$, plot a semilog (y-axis) and loglog plot

```
x=1:100;
y=exp(x);
subplot(1,2,1); semilogy(x,y); xlabel 'x'; ylabel 'log
y'; title 'semilog';
subplot(1,2,2); loglog(x,y); xlabel 'log x'; ylabel
'log y'; title 'loglog';
```

<u>3D plot</u>:

3D curves in a xyz-coordinate

plot3(x,y,z)

Example:

Plot the following curve in range of t = [-40,40]

 $f(x, y, z) = \begin{cases} x = \sin(t) \\ y = \cos(t) \\ z = \sin(t) + \cos(t) \end{cases}$

```
t=(-40:40);
x= cos(t);
y=sin(t);
z=sin(t)+cos(t);
plot3(x,y,z);
xlabel 'x'; ylabel 'y';zlabel 'z';title 'f(x,y,z)';
```

Print graphic or save it to specific file format.

print	Print figure or save to specific file format
saveas	Save figure to specific file format
getframe	Capture axes or figure as movie frame
	•
savefig	Save figure and contents to FIG-file
openfig	Open figure saved in FIG-file
orient	Paper orientation for printing or saving
hgexport	Export figure
printopt	Configure printer defaults

Input/output data from/into a file

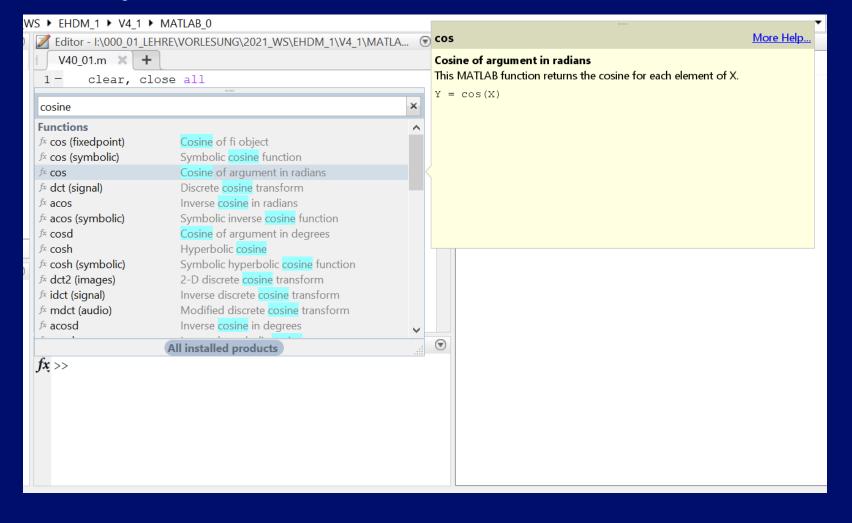
When data is large, the command-line arguments and input/output from/in terminal window are not efficient anymore. In such cases, the most common approach is to let the code read/write data from/into a pre-existing file.

Function	Description
load()	Load MATLAB variables from file into MATLAB workspace
save()	save MATLAB variables from MATLAB workspace into a MATLAB `.mat` file.
fscanf()	Read data from text file
fprintf()	Write data to a text file
dImread()	Read ASCII-delimited file of numeric data into matrix
dlmwrite()	Write a numeric matrix into ASCII-delimited file
csvread()	Read comma-separated value (CSV) file
csvwrite()	Write values of a matrix into a comma-separated (CSV) file
xlsread()	Read Microsoft Excel spreadsheet file
xlswrite()	write data into a Microsoft Excel spreadsheet file

Function	Description
readtable()	Create table from file
writetable()	Write table to file
imread()	Read image from graphics file
imwrite()	Write image to graphics file
importdata()	Load data from file
textscan()	Read formatted data from text file or string
fgetl()	Read line from file, removing newline characters
fread()	Read data from binary file
fwrite()	Write data to binary file
type()	Display contents of file

Example of writing a simple file

type exp.txt


x = 0:.1:1; A = [x; exp(x)]; % fileID = fopen('exp.txt','w'); fprintf(fileID,'%6s %12s\r\n','x','exp(x)'); fprintf(fileID,'%6.2f %12.8f\r\n',A); fclose(fileID); % File Edit Format View Help exp(x)х 0.00 1.00000000 0.10 1.10517092 0.20 1.22140276 0.30 1.34985881 0.40 1.49182470 0.50 1.64872127 0.60 1.82211880 0.70 2.01375271 0.80 2.22554093 0.90 2.45960311 2.71828183 1.00

exp.txt - Notepad

Functions

MathWorks® functions

- A wide variety of predefined mathematical functions in MATLAB, from basic functions to special functions.
- Find the name and description of a MathWorks® function from the Command Window or Editor using the Function browser.

User-defined functions

- A complex program may be divided into several functions.
- These functions can improve readability of the code, as well as promote re-usability of the code.
- The format of a function is:

function returnValue = fcnName(inputValue)

Executable code

end

HOMEWORK 2

Write a MATBAB script to

- Define the function **solv2** for solving a second-order equation,
- Apply this function for the following 2 cases:
 - 1. a = 7, b = 2, c = 12
 - 2. a = 4, b = -15, c = 2
- Display the calculated results on the screen by using the statement *display*,
- Write the results into a text-file.

$$ax^{2} + bx + c = 0$$
$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$