Regression and Classification

Predictive modelling

- Developing a model using historical data to make a prediction on new data where we do not have the answer.
- Approximating a mapping function (f) from input variables (x) to output variables (y). This is called the problem of function approximation.

$$y = f(x) + \varepsilon$$

 \Rightarrow the modeling algorithm needed to find the best mapping function considering the time and resources available.

Predictive modelling from labeled dataset and supervised algorithm

Linear regression

- Linear relationship between the input variables and the output variable
 - Simple linear regression

$$f(x) = \theta_0 + \theta_1 x$$

$$f(\vec{x}) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Simple linear regression

- Example: measured SS concentration along a river reach
- Assuming a linear relationship between concentration (y) and downstream distance (x):

 $f_{\theta}(x) = \theta_0 + \theta_1 x$ $y = f_{\theta}(x) + \varepsilon$

- θ_0 the intercept term (predicted value of y when x = 0)
- θ₁ the slope (the average increase in *y* associated with a one-unit increase in *x*)

- The error term is a catch-all for what we miss with this simple model:
 - the true relationship is probably not linear,
 - there may be other variables that cause variation in y, and
 - there may be measurement error.

We typically assume that the error term is independent of x.

Least square applied to measure the fitting of the hypothesis function on *m* examples

$$error^{(i)} = f_{\theta} \left(X^{(i)} \right) - Y^{(i)}$$
$$J \left(\theta \right) = \frac{1}{2m} \sum_{i=1}^{m} \left(error^{(i)} \right)^{2} = \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x_{1}^{(i)} - Y^{(i)} \right)^{2}$$

- $J(\theta)$ the Cost function
- Objective of Linear regression is to minimize $J(\theta)$ by adjusting θ

Surface and contours of $J(\theta)$

• Gradient of $J(\theta)$

$$\frac{\partial J}{\partial \theta_0} = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x_1^{(i)} - Y^{(i)} \right)$$
$$\frac{\partial J}{\partial \theta_1} = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x_1^{(i)} - Y^{(i)} \right) x_1^{(i)}$$

• Gradient descent

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial J}{\partial \theta_0}$$

- We store each example as a row in a MATLAB matrix:
 - X and Y are (m×1) column vectors
 - θ is (2×1) column vector.
- To rewrite the hypothesis function, cost function and its gradients, and the gradient descent expression in matrix forms, we add an additional first column to *X* and set it to all ones.

$$f_{\theta}(x) = X\theta$$

error = $(X\theta - Y)$

$$J(\theta) = \frac{1}{2m} (X\theta - Y)' (X\theta - Y)$$
$$\nabla J(\theta) = \frac{1}{m} X' (X\theta - Y)$$

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} - \boldsymbol{\alpha} \nabla J\left(\boldsymbol{\theta}\right)$$

Exercise 3.1:

Predict suspended sediment concentration at locations of 5 and 15 km downstream.

- Implement linear regression with one variable to predict suspended sediment concentration along a river reach.
- Data set: example_3_1.txt (with 84 examples):
 - o x_1 Downstream distance in 10 km
 - Y SS concentration in kg/m³.
- Uncompleted MATLAB-scripts
 - *Exercise3_1.m* Script that steps you through this exercise
 - o *PlotData.m* Function to display the dataset
 - ComputeCost.m Function to compute the cost of linear regression
 - o GradientDescent.m Function to run gradient descent
- <u>Your task</u>: to complete these MATLAB-scripts and run the program.

Multiple linear regression

- Linear regression with multiple input variables
- Assuming a linear relationship between output (Y) and inputs (X)

$$f_{\theta}(X) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$error^{(i)} = f_{\theta} \left(X^{(i)} \right) - Y^{(i)}$$
$$J \left(\theta \right) = \frac{1}{2m} \sum_{i=1}^{m} \left(error^{(i)} \right)^{2}$$

- $J(\theta)$ the Cost function
- Minimize $J(\theta)$ by adjusting θ

- We store each example as a row in a MATLAB matrix:
 - X is (m×n) matrix.
 - Y is $(m \times 1)$ column vector.
 - o θ is (n×1) column vector.
- Adding an additional first column to X and set it to all ones, we can rewrite the hypothesis function, cost function and its gradients, and the gradient descent expression in matrix forms.

$$f_{\theta}(x) = X\theta$$

error = $(X\theta - Y)$

$$J(\theta) = \frac{1}{2m} (X\theta - Y)' (X\theta - Y)$$
$$\nabla J(\theta) = \frac{1}{m} X' (X\theta - Y)$$

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} - \boldsymbol{\alpha} \nabla J\left(\boldsymbol{\theta}\right)$$

Feature Normalization

- Needed when feature magnitudes with large differences.
- First performing feature scaling can make gradient descent converge much more quickly.

$$x_{j,norm} = \left(x_j - \mu_j\right) / \sigma_j$$

- \circ μ_j mean value of each feature
- $\circ \sigma_i$ standard deviation of each feature

Loading data								
Fi	rst	: 10 ex	kamp:	le	s f	Erom	the	dataset:
х	=	[2104	3],	У	=	3999	00	
х	=	[1600	3],	У	=	3299	00	
х	=	[2400	3],	У	=	3690	00	
х	=	[1416	2],	У	=	2320	00	
х	=	[3000	4],	У	=	5399	00	
х	=	[1985	4],	У	=	2999	00	
х	=	[1534	3],	У	=	3149	00	
х	=	[1427	3],	У	=	1989	99	
х	=	[1380	3],	У	=	2120	00	
х	=	[1494	3],	У	=	2425	00	

Normal equation

• The closed-form solution to linear regression:

$$\nabla J(\theta) = \frac{1}{m} X' (X \theta - Y) =$$
X'X) convertible:
$$\theta = (X'X)^{-1} X'Y$$
X'X) nonconvertible:
$$\theta \approx pinv(X'X)X'Y$$

- The Tab Key helps to input the MATLAB-functions names
- The semicolon symbol at the end of a line suppresses the screen output.

Homework 3: (deadline for submission is 24th May 2022)

Predict housing price for a house of 1330 m² with 3 bedrooms in the city.

- Implement linear regression with two variables to predict housing prices in a city.
- Data set: *example_HW3.txt* (with 47 examples):
 - o X_1 size of the house (in m²)
 - o x_2 number of bed rooms
 - Y price in USD.
- Uncompleted MATLAB-scripts
 - *Homework3.m* Script that steps you through this exercise
 - o *PlotData.m* Function to display the dataset
 - o *ComputeCostMulti.m* Function to compute the cost for multiple variables
 - o GradientDescentMulti.m Function to run gradient descent
 - o FeatureNomalize.m Function to normalize features
 - *NormalEqn.m* Function to compute the normal equations
- <u>Your task</u>: 1. to complete these MATLAB-scripts and run the program.

2. Define the hypothesis function using the gradient descent method and the normal equation