ML Applications for Hydraulic



Conventional hydrodynamic numerical models and issues

Solving water engineering problems typically requires flow characterization,
including the prediction of space-time variation of flow depth and flow velocity.

Physically-based models: NS equations considering external forces with
suitable initial-boundary conditions can be used to describe flow characteristics.

* Applying an accurate numerical method

« Observed data and expert knowledge are required for
— Empirical formulae
— Model calibration and validation.

— Computation time consuming

— Mostly impossible for large scale modelling




ML models

« Trained on dataset can be obtained from
— Observation,
— Results of calibrated numerical models.
= Provide
— Non-linear relationship between flow parameters
— Predicted results in the short term.
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« Hydraulic jump occurs by converting the
supercritical to subcritical flow regimes
downstream of hydraulic structures.
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* Submerged hydraulic jump

in @ smooth bed channel

* Relative submergence depth
based on Buckingham theory:
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Researcher/method MAPE R?

Rao & Rajaratnam (1963) 0.1026 0.9921
Abdel-Aal (2004) 0.0540 09715
GMDH 0.043 0.9923
DGMDH 0.038 0.9944
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« Submerged jump length:
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Researcher/method MAPE R?
Rao & Rajaratnam (1963) 0.0926 0.9505
Abdel-Aal (2004) 0.0569 09478
GMDH 0.0527 0.9671
DGMDH 0.0387 0.9779
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* Relative energy loss

AE E, -E
El

El

= 2=3,(Fr,S)

Researcher/method MAPE R

Rao & Rajaratnam (1963) 0.1251 0.9980
Abdel-Aal (2004) 0.0403 0.9972
GMDH 0.0192 0.9932
DGMDH 0.0093 0.9994
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Changes in relative submergence
depth (ys/y,) versus the submergence
ratio (S) for different Froude numbers

Changes in the relative energy loss of
the submerged hydraulic jump (AE/E,)
versus the submergence ratio (S) for
different Froude numbers
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Influence of urban pattern on inundation flow in floodplains of L)
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¢ Department of Computer Science, Purdue University, USA

« To investigate the respective influence of various urban pattern characteristics on inundation flow
by applying:

— Steady two-dimensional hydraulic computations for over a set of 2000 synthetic urban
patterns (locations and shapes of streets and buildings over a square domain of 1 x 1 km?2)
with identical hydraulic boundary conditions.

— Multiple linear regressions for relationships between urban characteristics and the
computed inundation water depths.

* This study gives guidelines for more flood-proof urban planning.



STEP 1

/ 2,000 urban layouts /

STEP2

4
/ Flow characteristics /

STEP 3

Methodology for the determination of the influence
of building layout on inundation characteristics

Influence of
building layout
on inundation
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~ Upstream faces P Downstream faces

Building footprints for six out of the 2000 layouts used for simulations
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Water depths (m)

Velocity magnitude (m/s)

Building layout (c) Building layout (d) Building layout (f)
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Representation of water depths and flow fields for some urban patterns
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Definition of the tensor field of the streets, the parcels and building footprint in each parcel.

Urban parameter

Minimum

Maximum

S LLFHIET INRE

Average street length
Street orientation
Street curvature
Major street width
Minor street width
Park coverage

Mean parcel area
Building front setback
Building rear setback
Building side setback
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0°

0 km
16 m
8m
5%
350 m?
1 m
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33 m Urban parameters
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1100 m?

5m

5m

5m
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Results

COp=1 — Xg
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The 90th percentile of the computed water depths along the upstream boundary of the domain
is defined based on the district-scale storage @ and conveyance porosities ¥,.



Data preprocessing

* 9 urban input parameters

Variable definition Minimum Maximum
X; = L 40 m 400 m

Xy = |sin(2(a — 45))] 0 1

X3 =Y 0km™! 10 km !
Xe =W + 25 18 m 38 m

Xs =W + 25¢ 10 m 21m

X6 = A, 350 m? 1100 m?
X7 = S, I m 5m

Xg = S I m 5m

Xo = f(Ls, o, x, W, w, P, Ap, Sr, S, Ss) 0% 43%

« Inundation output: the 90t percentile of the computed water depths along the upstream boundary
of the domain (noted Ahg).
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MATLAB - Exercise 8.1

Import Data: Urban_Inundation.xIsx
Normalize variables
Divide into 3 datasets: Training (70%); Validation (15%); Testing (15%)
Design MLP networks with
*  Qinputs: x4,.., Xg
* 1 output: Ahg,
Train and test the networks by applying

« Case1: one hidden layer and different number of hidden neuron,
different activation and training functions

« Case 2: two hidden layers
Evaluate network performance and chose the “best” results.
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Major ML methods used for flood prediction in the literature.
Reference year: 2008 (source: Scopus)
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Flood Forecasting
Using Machine
Learning Methods

Edited by
Fi-John Chang, Kuolin Hsu and Li-Chiu Chang
Printed Edition of the Special Issue Published in Water

7
www.mdpi.com/journal/water rM\D\Py

https://gigamove.rwth-aachen.de/de/download/b7292e4400babaecefcc320552c2d0f7
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Water Level

Among other, time series of NN
infall as i i & \\*‘f‘e & & & & e
rainfall as important inputs KX I A T Sl N

affecting the water level /

flow discharge
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Rainfall

Time

Effect of Lead Time and Flood hydrograph at Downstream Location in a Watershed
(L. Mays & Tung, 1992)
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Time Series Distributed Delay Networks

4\ Distributed Delay Neural Metwork (view) — O >

Hidden OQutput

nnet = distdelaynet({1:2,1:2},20);
[Xs,Xi,Ai, Ts] = preparets(nnet,Input, Target);



Nonlinear Autoregressive Network with External Input

‘ MARK Meural Metwork [view) - O g

Open xu} Hidden

nnet = narxnet(inputDelays,
feedbackDelays,
hiddenLayerSize, 'open')

Closed

nnet = narxnet(inputDelays,
feedbackDelays,

hiddenLayerSize, ‘closed’)

4\ NARX Neural Network - Closed Loop (view) - O >

[Xs,Xi,Ai,Ts] =
preparets(nnet,Input,{}, Target) Hidden
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MATLAB - Exercise 8.2

A

Import time series data: Flood_Data.xIsx
Impute the missing data

Normalize variables

Design, train and test two following networks

I.  TS-ANN (Time Series Distributed Delay Networks) with 4 inputs
(flow discharge and precipitation at two former time steps) and one
output (flow discharge) at the present time.

[I.  Nonlinear Autoregressive Network with External Input

View the networks and evaluate the results.
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Data for your project

1. Germany

https://www.gkd.bayern.de/de/fluesse/abfluss/isar/grafrath-
16603000/download?zr=gesamt&beginn=01.07.2019&ende=
23.07.2019&wertart=ezw

2. USA
https://www.sciencebase.qgov/catalog/items?qg=&filter=tags%3
Dsuspended+material+%28water%29

https://waterdata.usgs.gov/co/nwis/uv/?site no=06708690&P
ARAmeter c¢d=00045,72192
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