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Conventional hydrodynamic numerical models and issues

• Solving water engineering problems typically requires flow characterization, 
including the prediction of space-time variation of flow depth and flow velocity.

• Physically-based models: NS equations considering external forces with 
suitable initial-boundary conditions can be used to describe flow characteristics.

• Applying an accurate numerical method
• Observed data and expert knowledge are required for

 Empirical formulae
 Model calibration and validation.

 Computation time consuming
 Mostly impossible for large scale modelling



3

ML models

• Trained on dataset can be obtained from
 Observation,
 Results of calibrated numerical models.

 Provide
 Non-linear relationship between flow parameters
 Predicted results in the short term. 
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• Hydraulic jump occurs by converting the 
supercritical to subcritical flow regimes 
downstream of hydraulic structures.
 High energy to erode the channel 

and river bed.
 Submerged hydraulic jump 

downstream of a sluice gate can 
disperse flow energy.

 Jump length plays an important 
role in the economic design of 
stilling basins and the length of 
the protection downstream

• Non-linear relationship between the 
relative energy loss, jump length, 
Froude number and submergence ratio.
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• Relative submergence depth 
based on Buckingham theory:
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• Submerged jump length:
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Changes in the relative energy loss of 
the submerged hydraulic jump (ΔE/E1) 
versus the submergence ratio (S) for 
different Froude numbers

Changes in relative submergence 
depth (y3/y1) versus the submergence 
ratio (S) for different Froude numbers
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• To investigate the respective influence of various urban pattern characteristics on inundation flow  
by applying:
 Steady two-dimensional hydraulic computations for over a set of 2000 synthetic urban 

patterns (locations and shapes of streets and buildings over a square domain of 1 × 1 km2 ) 
with identical hydraulic boundary conditions.

 Multiple linear regressions for relationships between urban characteristics and the 
computed inundation water depths.

• This study gives guidelines for more flood-proof urban planning.
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Methodology for the determination of the influence 
of building layout on inundation characteristics
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Building footprints for six out of the 2000 layouts used for simulations
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Representation of water depths and flow fields for some urban patterns
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Definition of the tensor field of the streets, the parcels and building footprint in each parcel.

Urban parameters
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Results

The 90th percentile of the computed water depths along the upstream boundary of the domain 
is defined based on the district-scale storage ΦD and conveyance porosities ΨD.
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Data preprocessing

• 9 urban input parameters

• Inundation output: the 90th percentile of the computed water depths along the upstream boundary 
of the domain (noted Δh90).
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MATLAB - Exercise 8.1

1. Import Data: Urban_Inundation.xlsx
2. Normalize variables
3. Divide into 3 datasets: Training (70%); Validation (15%); Testing (15%) 
4. Design MLP networks with

• 9 inputs: x1,.., x9

• 1 output: Δh90 

5. Train and test the networks by applying 
• Case1: one hidden layer and different number of hidden neuron, 

different activation and training functions
• Case 2: two hidden layers

6. Evaluate network performance and chose the “best” results.
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Major ML methods used for flood prediction in the literature. 
Reference year: 2008 (source: Scopus)
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https://gigamove.rwth-aachen.de/de/download/b7292e4400ba6aecefcc320552c2d0f7
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Among other, time series of 
rainfall as important inputs 
affecting the water level / 
flow discharge
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Effect of Lead Time and Flood hydrograph at Downstream Location in a Watershed 
(L. Mays & Tung, 1992)
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Time Series Distributed Delay Networks

nnet = distdelaynet({1:2,1:2},20);
[Xs,Xi,Ai,Ts] = preparets(nnet,Input,Target);
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Nonlinear Autoregressive Network with External Input

Open
nnet = narxnet(inputDelays,  
feedbackDelays, 
hiddenLayerSize, 'open')

Closed
nnet = narxnet(inputDelays,  
feedbackDelays, 
hiddenLayerSize, ‘closed')

[Xs,Xi,Ai,Ts] = 
preparets(nnet,Input,{}, Target)
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MATLAB - Exercise 8.2

1. Import time series data: Flood_Data.xlsx
2. Impute the missing data
3. Normalize variables
4. Design, train and test two following networks

I. TS-ANN (Time Series Distributed Delay Networks) with 4 inputs 
(flow discharge and precipitation at two former time steps) and one 
output (flow discharge) at the present time.

II. Nonlinear Autoregressive Network with External Input

5. View the networks and evaluate the results.
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Data for your project

1. Germany

https://www.gkd.bayern.de/de/fluesse/abfluss/isar/grafrath-
16603000/download?zr=gesamt&beginn=01.07.2019&ende=
23.07.2019&wertart=ezw

2. USA
https://www.sciencebase.gov/catalog/items?q=&filter=tags%3
Dsuspended+material+%28water%29

https://waterdata.usgs.gov/co/nwis/uv/?site_no=06708690&P
ARAmeter_cd=00045,72192


